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ABSTRACT 

In this paper, new results are obtained concerning the uniform approx- 

imation property (UAP) in LP-spaces (p ~ 2, 1, oo). First, it is shown 

that the "uniform approximation function" does not allow a polynomiM 

estimate. This fact is rather surprising since it disproves the analogy be- 

tween UAP-features and the presence of "large" euclidian subspaces in the 

space and its dual. The examples are translation invariant spaces on the 

Cantor group and this extra structure permits one to replace the problem 

with statements about the nonexistence of certain multipliers in harmonic 

analysis. Secondly, it is proved that the UAP-function has an exponen- 

tial upper estimate (this was known for p - 1, co). The argument uses 

Schauder's fix point theorem. Its precise behaviour is left unclarified here. 

It appears as a difficult question, even in the translation invariant context. 

1. I n t r o d u c t i o n  

The aim of this note is to settle some problems which came up in the paper 

[BT] and especially in the preceding paper [GTT] to which we also refer for 

background. We will show the following fact. 

THEOREM: Let 1 < p < c~, p # 2. For all ~ > 0 and N sutl~cJentJy large, there 

is a subspace X of the N-dimensioned LP-space ~ ,  such that codim X < N 6 

and any we11-bounded operator T on £PN ranging in X satlst]es trace T = o(N). 

We omit a heavy explicit formulation of the previous statement since it is clear 

to the reader a bit familiar with this area. Otherwise he may consult [GTT]. 
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In fact, the proof yields quantitative information that would permit to state a 

stronger result. 

Let us list some consequences of such examples. 

(1) Let 1 < p < 2 and take g = ~ .  It is known that if X has codimension 
2 

< N T ,  its Euclidean distance is extremal, i.e. 

(1.1) dist (X, e2di m x)  ~ N ~ - ½. 

On the other hand, X does not contain an isomorph ofe~ for n -~ N. Indeed, since 

this would imply a complemented embedding of an e~-subspace (complemented 

in the initial £~v-space), see [BT], there would be an X-valued operator on ~v 

with trace T ,,~ N. This question was left open in [BT] and was raised in [JS]. 

(2) Denote X ± the annilator of X given by the theorem. Thus Y = X ± is 
s s 

an n -- codimX dimensional subspace of ~v' Assume S is an operator on ~v 

satisfying 

(1.2) S [ y =  identit~ 

Clearly the operator on £~v given by 

(1.3) T =  Id - S *  

has range in X. Thus 

and therefore in particular 

traceT = o(N) 

(1.4) traces ,,- N. 

# 

Assuming ~ > 0 given and N large enough, one gets thus a subspace Y of e~v, 

dimY = n < N 6, such that if S fulfills (1.2), then (1.4) holds, i.e. 

(1.5) t races > n 1/~. 

This fact means that for p ~ 2 the space L v does not have the polynomial 

approximation property (ff plays the role of p in the considerations above). This 

question was open, except for p = 1, oo in which case it is known (see [FJS]) 

that  for certain n-dimensional spaces Y (1.2) implies t races > e on. In fact, the 
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spaces L 1, L ~ have an exponential UAP function. In Appendix, we show that 

the UAP function is exponentially bounded for all L p, 1 < p < co. The question 

whether one really has an exponential behaviour is left open. It is not implied 

by the example described below. 

(3) The statement of the theorem may be made more precise. One will show 

below (see 3.43) an estimate 

(1.6) t raceT < N 1-3'. I ITII  where 7 = 7(a)  > 0. 

As a corollary, one concludes that any Banach space possessing a "polynomial 

approximation property" needs to have type 2 - ~, cotype 2 + ¢, for all E > 0. 

Indeed, one would get otherwise by a result of Pisier*, for some p # 2, uniform 

l~-isomorphs for N --* oo admitting a complementation at most C, .N" ,  for any 

given r > 0. Hence the previous reasoning together with (1.6) easily yield a 

contradiction. 

This observation was communicated to the author by W.B. Johnson [J1]. It 

is of course a natural question what may be said more, especially in view of the 

results of [JP] where the uniform approximation property with linear uniformity 

function is characterized. 

The spaces appearing in the theorem are translation invariant spaces on the 

Cantor group. We will make essential use of harmonic Analysis methods and 

eventually will have to study the behaviour of certain LP-multipliers. The results 

obtained there are of independent interest. 

Throughout  this note, letters c, C will denote numerical constants. If they 

may depend on p, we add p as subscript. 

2. D e s c r i p t i o n  o f  t h e  e x a m p l e s  

We denote G the finite Cantor group { 1 , - 1 } "  with N = 2" dements.  The 

measure on G is the normalized Haar-measure (=  product measure) and the 

characters are given by the Walsh functions 

* This result (unpublished) is based on type-cotype theory. If the given space is B- 
convex, one may invoke a result from [P]. Otherwise, the polynomial AP hypothesis 
and the logarithmic bounds on K-convexity constants of finite dimensional spaces 
permit one to construct l~v-isomorphs in the space, which have a complementation 
constant at most log N. 
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ws(e) = I1 ei 
iES 

where ei (1 < i < n) is the ith coordinate projection and S ranges over the 2" 

subsets of {1,. . . ,  n}. We identify ~v with the space LP(G). For A C 2 (n), the 

subspace L~ is generated by {ws [S E A}. Let X = L~ where 

A - - { S c { 1 , . . , n } l l S l < , , - m }  

(ISl stands for the cardinality of the set S). Here m is chosen to satisfy 

(2.1) --m log __n ,,~ 
n m 

so that indeed 

(2.2) cod imX= (n :m)+ (n-m+ln) + . . . +  ( : )  ,-, ( n ) m <  N' .  

Suppose T : LP(G) --* X a linear operator such that 

(2.3) traceT > rN. 

Our first aim is to replace T by a multiplier. This is achieved the usual way by 

averaging, i.e. define 

T1 = f (R, TR,)de 
G 

where R~ denotes the translation operator 

(2.4) .R,f(x) = f(~ . x). 

Thus T1 corresponds to a multiplier A = (As) where 

( 2 . 5 )  As = 0 i f  ISl  ___ n - m ,  

(2.6) [IAII = IlAllp-.p ~ IITII, 

(2.7) E As = traceT. 
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An additional averaging argument over the symmetric group Sym(n) by permut- 

ing the coordinates permits one to assume, moreover, that  

(2.8) As = Ais I. 

From (2.3), (2.7) it now follows that for some 

1 3 
(2.9) 

one has 

(2.10) 

assuming the condition 

(2.11) 

T ~ >  

log 41[T[[ < n 
r 100 

satisfied. 

Our aim is to show that for given r, 6 > 0 it is impossible for a multiplier A on 

LP(G) to satisfy the conditions 

flAIl < 1 (2.12), 
~ t = 0 i f t > n - m  (2.13), 

(2.91 + (2.~1. 
Here m satisfies (2.1) and the normalization (2.12) may always be assumed. This 

is, of course, a concrete harmonic analysis problem on the Cantor group. We 

settle this question in the next section. 

3. Estimates on certain multipliers 

We will need two elementary lemmas. We don't attempt to state them in the 

most precise form. 

LEMMA 3.1: For p ~ 2, there is an lnteger r = rp > 10 and a number ~ = ~p > 1 

as well as a function ~ E [ws [ S C {1 , . . . ,  r}], such that 

[ ~ = o, (3.2) 
J 

(3.3) II~'II,, -~ I, 
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(3.4) II = > 1 
i = 1  

Proof." The first condition (3.2) may be ignored, since one may Mways replace 

by 1 ( ~ ( e ) _  qo(-e)). Then (3.2)is achieved, II~ll, is non-increasing and (3.4) 

preserved. In this form, it suffices to observe that LP{{i};l<i<r} is not norm-1 

complemented in LP({1,-1} r) since this subspace is not spanned by functions 

having mutually disjoint support; see e.g. [L], Chap. 6.* | 

LEMMA 3 . 5 :  L e t  a < b be positive integers and Ma,b the smallest constant 

satisfying the polynomial inequality 

b 

(3.6) sup  pi J> 1 -z<6<z ~ ~ m a x  I Pj [ 
3ma 

for any polynomial written as a linear combination of the monomials {tJ I a < 

j < b}. Then one has an estimate 

(3.7) 

This estimate (in fact the L2-estimate, which is equivalent here) may be found 

in [N] (in the discussion of Miintz' theorem). Alternatively, one may proceed by 

Lagrange interpolation on the interval [1 - k~_~, 1]. 

Define now 

([ ] denotes the integer part). 

Let ral < } ~ be a positive integer on which a more precise upper estimate 

will be imposed later. We assume 

4 
(3.9) < , ' ,  

* In fact, the conditions of the |emma may already be realized for r -- 3,~ E 
[el,~2,ea,ele2ea]. 

** The interest in this estimate is that it improves on the exponential estimate on b 
when b - a = o(b). This is the situation in which it will be applied later on. 
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(in fact m is, of course, initially assumed small w.r.t, n but will be adjusted later 

on through some iteration process that finally will contradict (2.10)). 

By (3.9), the integer nl defined by 

(3.10) n - -  m - -  m l  = n l  q'- 

is clearly positive. Also, from (3.8), (3.10) 

(3.11) nl + r ~ < n. 

Define the function ( -1  < 6 < 1) 

(3.12) ~,  = ~ ~l~l~(s)~ = ~ ,  (r,~lslws) 
S C { 1  ..... r }  

where ~o is the function given by Lemma 3.1. Of course ~o~ still satisfies (3.2), 
(3.3). 

Taking (3.11) into account, consider the function f~ on G defined as follows: 

(3.13) f~(¢) = 

~ d ~ ,  • • • ,  ~ r ) ~ 6 ( ~ , + 1 , . . . ,  ~ 2 r ) "  • • ~ , ( e ( ~ - 1 ) ~ + 1 ,  • • • ,  ~ , ) "  ~ + 1  • • • ~ . , + , , .  

Thus 

(3.14) II/~llp < 1 for  - 1 < $ < 1. 

Define Ft by the equation 

(3.15) 6'-"1F' = Z f(S)ws. 
lsl=t 

It follows from (3.2), (3.10) that 

(3.16) Ft -- 0 

and 

(3.17) 

i f t  < n -  m -  ml 

r r 

1 1 
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From (3.4), clearly by the probabilistic independence of the factors in (3.17) 

(3.18) 

Consider the convolution 

(3.19) f~ * A = 
n--m--ml ~t<~n--m 

In this summation, the lower restriction on t follows from (3.16) and the upper 

from (2.13). 

Again from (3.10), (3.19) is a (vector-valued) polynomial in ~ E [-1,1] written 

in monomials ~J with a = rh _< j < rh + ml = b. Since Lemma 3.5 carries obvi- 

ously from the scalar to the vector valued setting (by polarization), the inequality 

(3.20) ]lf~* A[Ip -< [JAIl 

implied by (3.14) yields, in particular, 

(3.21) [A,,_.~_,.~lllF._m_m, llp < M~,~.+~IIAII. 

Thus, from (3.18), (3.7), (3.8) 

(3.22) iA,_m_ml [ < ~_,~. ( rh ~c.ml 

provided ml is subject to a restriction of the form ml <t cprh, or equivalently 

(3.23) ml < cp m. 

It follows from (2.12), (3.22) that for ml satisfying (3.23) 

(3.24) IA.-rn-m, [<  2 -~Pm- 

Fix a positive integer ~ (to be specified) and introduce a new multiplier p 

defined by 

f p s = A ~  if IS[<_n-m-cpm,  
(3.26) / #s = 0 otherwise. 
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From (3.24) and harmonic analysis on the Cantor group, it follows that for p* = 

p Vp' 

(3.27) Ilgll < IIAII t +  ~ (P* - 1)~-~ IArlt < 1 + 2 - c ' t ' c~  ' 
n--m--crm<r<n--m 

and for an appropriate choice 

(3.28) ! = / r  

one gets 

(3.29) IMI < 2. 

Considering 1 ~/~, a new multiplier is obtained, satisfying (2.12), (2.13) with m 
replaced by (1 + Cp)m. It follows from (2.10), (3.24) and the definition of g that 

T t 
(3.30) ~ < . - r a -  %m; #a = At~ > (~) . 

Thus ½p fulfills (2.10) with ~- replaced by 

(3.31) = 1½)' 

In what precedes, we used our assumption 

T 
2 - %  m < ~? (3.32) 

i.e., from (2.1) 

(3.33) N > ( 1 )  c'}l°g } 

Repeat all previous considerations with A replaced by A1 1 -- ~#. 

I I I t 

0 " ~ " 

A=O 

n - - f l t l - - ~ f f l  n - -  rltl 11 

~,-=o 

This is possible provided the analogue of (3.32) holds, thus by (3.31) 

(3.34) 2 -cpO+c')" < ~- = 



(3.39) 

hence 
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Moreover, one has now 

(3.35) fi < rt - m - cprrt - cp(1 + cp)m. 

Iterate this construction d times. This will require to have an estimate of the 

form 

(2~ t' 
(3.36) 2 -%(1+%)'m < \ 2 d )  

valid, which in turn is implied by a bound of the form 

1 • log 1 1 (3.37) ~ ~ .  Cp d . log < n. 

We also assume d satisfying 

(3.38) (1 + %)drn  < 4 

in order to preserve condition (3.9). 

For such d, one gets the analogue of (3.35) 

< fi < . - m - c v r n - c v ( l + c p ) m  . . . . .  %(1+%)  a-1 m = . - - ( 1 + % ) d i n  

' 1  

(3.40) (1 + cp) d • m < 4"" 

Assuming % > 0 taken sufficiently small, (3.38) may be fulfilled and (3.40) 

not, unless (3.37) forces d to satisfy 

10, 1 
(3.41) (1 + cp) a < ~ log ~. 

This is clearly not the case i f ,  is assumed ]arge enough. Thus one gets (3.37), 

(3.38) and the failure of (3.40), a contradiction. This completes the argument. 

Observe that the preceding yields a more precise condition, of the form 

(3.42) n > l o g  • , 

to get the contradiction. Equivalently, there is a subspace X of ~v of codimension 

< N 6 such that any operator T on ~v ranging into X satisfies a trace estimate 

(3.43) traceT < NI-'rp(OHT H 

where 

(3.44) ~,(~) > ~c, .  
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4.  R e m a r k  

We would like to draw the reader's attention to the following questions on 

LP({1,-1}'*)-multipliers, p # 2, 1, oo. 

Q1. Is there e = % > 0 such that if $ is a 1 + e-bounded multiplier on L/' and 

(4.1) ${i} = 1 for i = 1 , . . . , n  

then log trace A -~ n? 

Q2. Is there a constant K = Kp such that if ~ is a 2-bounded multiplier on L p 

and 

(4.2) As = 1 if IS[ < K v 

then log trace ~ ,,- n? 

These were communicated to the author by W.B. Johnson. A positive answer 

to Q2 solves Q1 affirmatively. 

5. A p p e n d i x :  E x p o n e n t i a l  e s t i m a t e  o n  t h e  U A P - f u n c t i o n  in  L p 

It follows from the preceding that the UAP-function in L p, say ¢pp(n), satisfies 

~op(n) > exp(log n) 1+=, (p # 2, c v > 0), for n --* oo. Our purpose is to show 

an exponential upper estimate (known for p = 1, oo). Besides more "standard 

techniques" the argument will rely on a Schauder fixpoint argument. 

Fix 2 < p < oo (the ease 1 < p < 2 is covered by Mascioni's duality result, [M]). 

Let fl be finite with normalized counting measure A and X an n-dim function 

space on ~. Let K = {p: n --4 [½, oo[I f pdX = 1}, clearly compact, convex. For 

given p E K,  consider the set of triplets/Ca = {(E, T, Pl)} where 

(i) E is an operator with for all q 

(ii) T is an operator with 

[[EHLe(pd)~)...,L,(pdJi) < 2, 

IIEIIN(Lqpd~),Lqp,a~)) < M.  

I[THL~(fl)_,L~(fl) < 1 ~'~. 

(iii) I - E lp - l l ,  x = T[p - l / , x .  

(iv) p~ ~ K. 
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(v) J" IT.fl2pd.X <_ ~ f Ifl2pxd), V f 
We make the following claims: 

(I) /Ca is convex and compact. 

(II) For suitable choice of M (exponential in n), g:p is non-void and depends 

continuously on p. 

Define then Kp C K as the projection of/Cp on the pl factor. 

Hence Kp is non-void compact convex with continuous p-dependence. 

One then defines a transformation of K,  letting 

v(p) = element of Kp with minimum L2()~) - norm. 

From the preceding, ~'(p) is continuous in p and hence there is a fix point, i.e., 

there is p E K with p E Kp. 

From (v), I]T]IL,(~,,tX)...,L2(p,~) < ~10 and interpolating with (ii) yields 

1 
I lT] lL, O, dX)_.,L,(pd;l ) < ~ (2 _< p < oo). (vi) 

The operator 

E1 = (I  + T + T 2 + . .  ")E 

is well bounded on LV(pd) 0 with nuclear norm estimate M*, because of (i). Also 

El]p-11px = Id Ip-l/px because of (iii). Thus the isometry Lv(A) ~ LV(p,k) : 
f _. p-1/pf  maps X to a space with desired approximation properties; therefore 

X itself satisfies them. It remains to show (II). 

Assume p E K,  (E,T,  pl) E ICp and p~ E K an approximation of p such that 

P (vii) 1 - e < ~ < t + 

(elements of K are >__ ½). Denote X a = p-XlPX, Xp, = (p ')-xlPx,  

E' = ( p ]X/p ~ T' (P]I /PT((Pl)I /P) .  
" 7 "  = " p ' "  ""  p "  " 

It easily follows from (vii) that E', 7' and pl satisfy (i), (ii), (v) (replacing p by 
p~, provided the estimates are multiplied by a factor 1 + Ce. Also, by construction 

I - E ' i x , ,  = T'[x,, .  Obviously (E',  T', p~) is a perturbation of (E, T, Pl ). Assume 

* Passing from the exponential nuclear norm estimate to exponential rank is achieved 
following [M]. 
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we also have (E", T", p") • Ep, where moreover the estimates in (i), (ii), (v) are 

respectively 

(viii) 

Define then 

1 1 1 
I, ~M, 20' 20" 

= (1 - 6)E'  + 6E",  

= (1 - 6)T' + 6T", 

1 se (i - 6)(1 + Ce)m + 6~p 

(1 - 6)(1 + C~) + ½6 

For small 6, (E, T, ~) is a perturbation of (Z',  T', Pl), hence of (E, T, Pl). Here 

6 -,, e. Hence if we show that (/~, T, ~) • Ep,, the continuous dependence of K:p 

on p is shown. Now (iii), (iv) are preserved under convex combination. The other 

properties follow from an estimate 

6 
(1 - 6)(1 + Ce) + ~ < 1 (valid for some 6 ,,~ e). 

The existence of (E",  T",  p") is shown in a direct way. Take an expectation E" 

w.r.t, p'dA of rank M (exponential in n = dimXp,) such that 

IIx - E"xll~ ~< 10-411x11~ forx • Xp,. 

Its existence follows from entropy considerations in the unit ball of the dual space 

X$,. Extend I - i f ' I x , ,  to an operator T" on L~(~2) with IT"] < 10 -4 and apply 

Grothensheck's theorem to get p'" s.t. p'" >_ O, f p'" d$ = 1 and 

IT"fl2p'dA < K~10 -4 /Ifl2P '''d~. 

Finally, put p" = ½(1 + p'"). All the conditions are clearly fulfilled. 
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